Principal     Comenzar     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astrofotografía     La Colección     Foro     Blog New!     FAQ     Prensa     Login  

HD 14404


Contenidos

Imágenes

Subir su imagen

DSS Images   Other Images


Artículos relacionados

Variability in red supergiant stars: pulsations, long secondary periods and convection noise
We study the brightness variations of galactic red supergiant starsusing long-term visual light curves collected by the AmericanAssociation of Variable Star Observers over the last century. The fullsample contains 48 red semiregular or irregular variable stars, with amean time-span of observations of 61 yr. We determine periods and periodvariability from analyses of power density spectra and time-frequencydistributions. We find two significant periods in 18 stars. Most ofthese periods fall into two distinct groups, ranging from a few hundredto a few thousand days. Theoretical models imply fundamental, first andpossibly second overtone mode pulsations for the shorter periods.Periods greater than 1000 d form a parallel period-luminosity relationthat is similar to the long secondary periods of the asymptotic giantbranch stars. A number of individual power spectra shows a single moderesolved into multiple peaks under a Lorentzian envelope, which weinterpret as evidence for stochastic oscillations, presumably caused bythe interplay of convection and pulsations. We find a strong 1/f noisecomponent in the power spectra that is remarkably similar in almost allstars of the sample. This behaviour fits the picture of irregularphotometric variability caused by large convection cells, analogous tothe granulation background seen in the Sun.

Local kinematics of K and M giants from CORAVEL/Hipparcos/Tycho-2 data. Revisiting the concept of superclusters
The availability of the Hipparcos Catalogue has triggered many kinematicand dynamical studies of the solar neighbourhood. Nevertheless, thosestudies generally lacked the third component of the space velocities,i.e., the radial velocities. This work presents the kinematic analysisof 5952 K and 739 M giants in the solar neighbourhood which includes forthe first time radial velocity data from a large survey performed withthe CORAVEL spectrovelocimeter. It also uses proper motions from theTycho-2 catalogue, which are expected to be more accurate than theHipparcos ones. An important by-product of this study is the observedfraction of only 5.7% of spectroscopic binaries among M giants ascompared to 13.7% for K giants. After excluding the binaries for whichno center-of-mass velocity could be estimated, 5311 K and 719 M giantsremain in the final sample. The UV-plane constructed from these datafor the stars with precise parallaxes (σπ/π≤20%) reveals a rich small-scale structure, with several clumpscorresponding to the Hercules stream, the Sirius moving group, and theHyades and Pleiades superclusters. A maximum-likelihood method, based ona Bayesian approach, has been applied to the data, in order to make fulluse of all the available stars (not only those with precise parallaxes)and to derive the kinematic properties of these subgroups. Isochrones inthe Hertzsprung-Russell diagram reveal a very wide range of ages forstars belonging to these groups. These groups are most probably relatedto the dynamical perturbation by transient spiral waves (as recentlymodelled by De Simone et al. \cite{Simone2004}) rather than to clusterremnants. A possible explanation for the presence of younggroup/clusters in the same area of the UV-plane is that they have beenput there by the spiral wave associated with their formation, while thekinematics of the older stars of our sample has also been disturbed bythe same wave. The emerging picture is thus one of dynamical streamspervading the solar neighbourhood and travelling in the Galaxy withsimilar space velocities. The term dynamical stream is more appropriatethan the traditional term supercluster since it involves stars ofdifferent ages, not born at the same place nor at the same time. Theposition of those streams in the UV-plane is responsible for the vertexdeviation of 16.2o ± 5.6o for the wholesample. Our study suggests that the vertex deviation for youngerpopulations could have the same dynamical origin. The underlyingvelocity ellipsoid, extracted by the maximum-likelihood method afterremoval of the streams, is not centered on the value commonly acceptedfor the radial antisolar motion: it is centered on < U > =-2.78±1.07 km s-1. However, the full data set(including the various streams) does yield the usual value for theradial solar motion, when properly accounting for the biases inherent tothis kind of analysis (namely, < U > = -10.25±0.15 kms-1). This discrepancy clearly raises the essential questionof how to derive the solar motion in the presence of dynamicalperturbations altering the kinematics of the solar neighbourhood: doesthere exist in the solar neighbourhood a subset of stars having no netradial motion which can be used as a reference against which to measurethe solar motion?Based on observations performed at the Swiss 1m-telescope at OHP,France, and on data from the ESA Hipparcos astrometry satellite.Full Table \ref{taba1} is only available in electronic form at the CDSvia anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/430/165}

Brightness and Polarization Variations of S Per and T Per
Results of photoelectric BV observations of the brightness andpolarization in the V band for S Per and T Per over a period of eightyears are presented. An attempt is made to isolate the interstellarpolarization. A comparison of the variations in the brightness andintrinsic polarization reveals some relationships among thesequantities.

The association of IRAS sources and 12CO emission in the outer Galaxy
We have revisited the question of the association of CO emission withIRAS sources in the outer Galaxy using data from the FCRAO Outer GalaxySurvey (OGS). The availability of a large-scale high-resolution COsurvey allows us to approach the question of IRAS-CO associations from anew direction - namely we examined all of the IRAS sources within theOGS region for associated molecular material. By investigating theassociation of molecular material with random lines of sight in the OGSregion we were able to construct a quantitative means to judge thelikelihood that any given IRAS-CO association is valid and todisentangle multiple emission components along the line of sight. Thepaper presents a list of all of the IRAS-CO associations in the OGSregion. We show that, within the OGS region, there is a significantincrease ( ~ 22%) in the number of probable star forming regions overprevious targeted CO surveys towards IRAS sources. As a demonstration ofthe utility of the IRAS-CO association table we present the results ofthree brief studies on candidate zone-of-avoidance galaxies with IRAScounterparts, far outer Galaxy CO clouds, and very bright CO clouds withno associated IRAS sources. We find that ~ 25% of such candidate ZOAGsare Galactic objects. We have discovered two new far outer Galaxystar-forming regions, and have discovered six bright molecular cloudsthat we believe are ideal targets for the investigation of the earlieststages of sequential star formation around HII regions. Finally, thispaper provides readers with the necessary data to compare othercatalogued data sets with the OGS data.Tables 1, 2 and A1 are only available in electronic form at the CDS viaanonymous ftp to\ cdsarc.u-strasbg.fr (130.79.128.5) or via\http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/399/1083

Hipparcos red stars in the HpV_T2 and V I_C systems
For Hipparcos M, S, and C spectral type stars, we provide calibratedinstantaneous (epoch) Cousins V - I color indices using newly derivedHpV_T2 photometry. Three new sets of ground-based Cousins V I data havebeen obtained for more than 170 carbon and red M giants. These datasetsin combination with the published sources of V I photometry served toobtain the calibration curves linking Hipparcos/Tycho Hp-V_T2 with theCousins V - I index. In total, 321 carbon stars and 4464 M- and S-typestars have new V - I indices. The standard error of the mean V - I isabout 0.1 mag or better down to Hp~9 although it deteriorates rapidly atfainter magnitudes. These V - I indices can be used to verify thepublished Hipparcos V - I color indices. Thus, we have identified ahandful of new cases where, instead of the real target, a random fieldstar has been observed. A considerable fraction of the DMSA/C and DMSA/Vsolutions for red stars appear not to be warranted. Most likely suchspurious solutions may originate from usage of a heavily biased color inthe astrometric processing.Based on observations from the Hipparcos astrometric satellite operatedby the European Space Agency (ESA 1997).}\fnmsep\thanks{Table 7 is onlyavailable in electronic form at the CDS via anonymous ftp tocdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/397/997

Long period variable stars: galactic populations and infrared luminosity calibrations
In this paper HIPPARCOS astrometric and kinematic data are used tocalibrate both infrared luminosities and kinematical parameters of LongPeriod Variable stars (LPVs). Individual absolute K and IRAS 12 and 25luminosities of 800 LPVs are determined and made available in electronicform. The estimated mean kinematics is analyzed in terms of galacticpopulations. LPVs are found to belong to galactic populations rangingfrom the thin disk to the extended disk. An age range and a lower limitof the initial mass is given for stars of each population. A differenceof 1.3 mag in K for the upper limit of the Asymptotic Giant Branch isfound between the disk and old disk galactic populations, confirming itsdependence on the mass in the main sequence. LPVs with a thin envelopeare distinguished using the estimated mean IRAS luminosities. The levelof attraction (in the classification sense) of each group for the usualclassifying parameters of LPVs (variability and spectral types) isexamined. Table only available in electronic form at the CDS viaanonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or viahttp://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/374/968 or via ASTRIDdatabase (http://astrid.graal.univ-montp2.fr).

A Large Spectral Class Dependence of the Wilson-Bappu Effect among Luminous Stars
The striking correlation between Ca II K-line emission width andabsolute visual magnitude has not previously been well calibrated forstars more luminous than giants. From a sample of binary systems fit toisochrones, we find deviations of more than 2 mag, correlated withspectral class, between these binarity Mv values and theWilson-Bappu relation. Additional Mv values derived fromHipparcos parallaxes are used to explore the systematics. The spectralclass dependence vanishes for K-line parameterlogW0<=1.80. Linear spectral class corrections are derivedfor the more luminous stars, with logW0>=2.00, while atable is provided for the transition region. The dispersion from theserelations is about +/-0.6 mag. This recalibration extends thedemonstrated applicability of the Wilson-Bappu technique toMv~=-5 or distance ~20 kpc.

Dust features in the 10-mu m infrared spectra of oxygen-rich evolved stars
We have analyzed the 8-13.5 mu m UKIRT CGS3 spectra of 142 M-type starsincluding 80 oxygen-rich AGB stars and 62 red supergiants, with a viewto understanding the differences and similarities between the dustfeatures of these stars. We have classified the spectra into groupsaccording to the observed appearance of the infrared features. In eachcase the normalized continuum-subtracted spectrum has been compared tothose of the other stars to find similarities and form groups. The dustfeatures of the AGB stars are classified into six groups: broad AGB,where the feature extends from 8 mu m to about 12.5 mu m with littlestructure; broad+sil AGB, which consists of a broad feature with anemerging 9.7 mu m silicate bump; and four silicate AGB groups in which a``classic'' 9.7 mu m silicate feature gets progressively narrower.Likewise, the supergiant spectra have also been classified into groups,however these do not all coincide with the AGB star groups. In thesupergiant case we again have six groups: featureless, where there islittle or no emission above the continuum; broad Super, where thefeature extends from about 9 mu m to about 13 mu m; and four silicateSuper groups, which again show a progression towards the narrowest``classic'' 9.7 mu m silicate feature. We compare the mean spectrum foreach group, which yields two main results. Firstly, while the``classic'' silicate feature is essentially identical for both AGB starsand red supergiants, the broad features observed for these two stellartypes are quite different. We suggest that the dust in these twoenvironments follows different evolutionary paths, with the dust aroundMira stars, whose broad feature spectra can be fit by a combination ofalumina (Al2O3) and magnesium silicate,progressing from this composition to dust dominated by magnesiumsilicate only, while the dust around supergiants, whose broad featurecan be fit by a combination of Ca-Al-rich silicate andAl2O3, progresses from this initial composition toone eventually also dominated by magnesium silicate. The reason for thedifference in the respective broad features is not clear as yet, butcould be influenced by lower C/O ratios and chromospheric UV radiationfields in supergiant outflow environments. The second result concernsthe 12.5 - 13.0 mu m feature discovered in IRAS LRS spectra and widelyattributed to Al2O3. This feature is seenpredominantly in the spectra of semiregular variables, sometime in Mirasand only once (so far) in supergiant spectra. We argue that it isunlikely that this feature is due to Al2O3 or, ashas more recently been suggested, spinel(MgAl2O4), but could be associated with silicondioxide or highly polymerized silicates (not pyroxenes or olivines).

Observational investigation of mass loss of M supergiants
We present the analysis of infrared photometry and millimeterspectroscopy of a sample of 74 late-type supergiants. These observationsare particularly suitable to study the mass loss and the circumstellarenvelopes of evolved massive stars. In particular, we quantify thecircumstellar infrared excess, the relation of mass loss with stellarproperties, using the K-[12] colour index as mass-loss indicator. We donot find any clear correlation between mass loss rate and luminosity. Wealso show that the K-band magnitude is a simple luminosity indicator,because of the relative constancy of the K-band bolometric correction.Based on observations collected at the European Southern Observatory, LaSilla, Chile within program ESO 54.E-0914, and on observations collectedwith the IRAM 30m telescope. Tables A1 to A3 are only available inelectronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr(130.79.128.5) or via http://cdsweb.u-strasbg.fr/Abstract.html

Elemental Abundances in Evolved Supergiants. II. The Young Clusters H and χ Persei
We report on the results of our analyses of high-quality spectra of Msupergiants in the h and χ Persei double cluster. Our temperatureestimates range from 3500 to 4000 K for a sample of 14 stars. There is awide range in the lithium abundances, from [Li/Fe]=-1.7 to[Li/Fe]=-0.10. The 12C/13C ratio ranges from 10 to16 and displays a weak trend with luminosity, such that the moreluminous stars have a slightly smaller ratio. We find a significantexcess of Na, which may be due to its production by proton capture by22Ne. However, there is no evidence for the O deficiency thatusually accompanies a Na excess in globular cluster stars.

SiO Masers in Stars in the Inner and Outer Galactic Disk
Observations in the J=1--0, v=1 and v=2 ^{{28}} SiO and v=0 ^{{29}} SiOmaser lines were made towards 97 outer- and 19 inner-disk IRAS sourceswith typical IRAS colors of AGB stars. 21 new ^{{28}} SiO and 1 new^{{29}} SiO maser sources were detected above the 5 sigma level of ~ 1Jy with the Nobeyama 45 m telescope. Collecting all of the observationaldata in SiO J=1--0 maser lines taken with a 45 m telescope, a comparisonis made between the outer-disk, inner-disk, and bulge samples. Thesamples, themselves, align a sequence of mid-infrared color, flux at 12mu m and IRAS variability index. The detection rates are 66%, 51%, and31%, respectively, in the bulge, inner disk, and outer disk. This factis consistent with the tendency of increasing proportion of C-rich starsin the IRAS sample and metallicity gradient with the galactocentricdistance.

Classification and Identification of IRAS Sources with Low-Resolution Spectra
IRAS low-resolution spectra were extracted for 11,224 IRAS sources.These spectra were classified into astrophysical classes, based on thepresence of emission and absorption features and on the shape of thecontinuum. Counterparts of these IRAS sources in existing optical andinfrared catalogs are identified, and their optical spectral types arelisted if they are known. The correlations between thephotospheric/optical and circumstellar/infrared classification arediscussed.

Red supergiants, neutrinos and the Double Cluster
The Perseus Double Cluster is surrounded by one of the largestconcentrations of red supergiant stars in the sky. As a consequence, thedevelopment of our understanding of the structure and evolution of thesestars has been intimately connected with studies of this cluster. Thispaper traces the history of this connection from the end of the 19thcentury through to the early 1970s.

Water Masers Associated with Circumstellar Shells
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1996ApJS..106..579B&db_key=AST

An Infrared Color-Magnitude Relationship
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1995AJ....110.2910H&db_key=AST

Vitesses radiales. Catalogue WEB: Wilson Evans Batten. Subtittle: Radial velocities: The Wilson-Evans-Batten catalogue.
We give a common version of the two catalogues of Mean Radial Velocitiesby Wilson (1963) and Evans (1978) to which we have added the catalogueof spectroscopic binary systems (Batten et al. 1989). For each star,when possible, we give: 1) an acronym to enter SIMBAD (Set ofIdentifications Measurements and Bibliography for Astronomical Data) ofthe CDS (Centre de Donnees Astronomiques de Strasbourg). 2) the numberHIC of the HIPPARCOS catalogue (Turon 1992). 3) the CCDM number(Catalogue des Composantes des etoiles Doubles et Multiples) byDommanget & Nys (1994). For the cluster stars, a precise study hasbeen done, on the identificator numbers. Numerous remarks point out theproblems we have had to deal with.

On the duplicity of cool giant and supergiant variable stars
From the analysis of photometric, colorimetric and polarimetric data itfollows that high luminosity red variable stars are divided into twogroups: group I - double stars with brightness variation periods of morethan 480 days, group II - single stars with periods less than 480 days.Moreover, double stars possess: a) high coefficients of correlationbetween brightness V and U - B, B - V colors; b) relatively low valuesof U - B (m5) and high infrared excess; c) strong variations ofparameters of polarization (>1.5) and often those are associated withmaser sources.

Uir-Band Emission from M Supergiants
Abstract image available at:http://adsabs.harvard.edu/cgi-bin/nph-bib_query?1994MNRAS.266..640S&db_key=AST

Determination of two groups of high luminosity red variable stars.
Not Available

Galactic OB associations in the northern Milky Way Galaxy. I - Longitudes 55 deg to 150 deg
The literature on all OB associations was reviewed, and their IRAS pointsource content was studied, between galactic longitude 55 and 150 deg.Only one third of the 24 associations listed by Ruprecht et al. (1981)have been the subject of individual studies designed to identify thebrightest stars. Distances to all of these were recomputed using themethod of cluster fitting of the B main sequence stars, which makes itpoossible to reexamine the absolute magnitude calibration of the Ostars, as well as for the red supergiant candidate stars. Also examinedwas the composite HR diagram for these associations. Associations withthe best defined main sequences, which also tend to contain very youngclusters, referred to here as OB clusters, have extremely few evolved Band A or red supergiants. Associations with poorly defined mainsequences and few OB clusters have many more evolved stars. They alsoshow an effect in the upper HR diagram referred to as a ledge byFitzpatrick and Garmany (1990) in similar data for the Large MagellanicCloud. It is suggested that the differences in the associations are notjust observational selection effects but represent real differences inage and formation history.

Asymptotic giant branch stars near the sun
Available red and near-infrared photometry and apparent motions of M, S,and C asymptotic giant branch (AGB) stars in the Bright Star Catalogueare tabulated and discussed. It is shown that the red and near infraredindices normally used for late-type stars are interchangeable except forcarbon stars. The M-type giants are variable with visual amplitudegreater than 0.05 mag. The reddening-free parameter m2 from Genevaphotometry is essentially a temperature parameter for M giants, whilethe reddening-free parameter d is a sensitive detector of blue stellarcompanions. The space density of AGB stars near the sun decreases by afactor of 35 in a temperature range 3800 to 3400 K. Two of the S starsnear the sun were found to have nearly equal space motions and may becomembers of the Arcturus group.

Mass-losing M supergiants in the solar neighborhood
A list of the 21 mass-losing red supergiants (20 M type, one G type; Lgreater than 100,000 solar luminosities) within 2.5 kpc of the sun iscompiled. These supergiants are highly evolved descendants ofmain-sequence stars with initial masses larger than 20 solar masses. Thesurface density is between about 1 and 2/sq kpc. As found previously,these stars are much less concentrated toward the Galactic center thanW-R stars, which are also highly evolved massive stars. Although withconsiderable uncertainty, it is estimated that the mass return by the Msupergiants is somewhere between 0.00001 and 0.00003 solar mass/sq kpcyr. In the hemisphere facing the Galactic center there is much less massloss from M supergiants than from W-R stars, but, in the anticenterdirection, the M supergiants return more mass than do the W-R stars. Theduration of the M supergiant phase appears to be between 200,000 and400,000 yr. During this phase, a star of initially at least 20 solarmasses returns perhaps 3-10 solar masses into the interstellar medium.

Statistical characteristics of the ten-micron silicate emission in M-type stars
The statistical characteristics of 10 micron silicate emission wereexamined for 1427 M-type stars in the catalog of the Two-Micron SkySurvey using the low-resolution spectra obtained by IRAS. Correlationswere examined of 10 micron silicate emission with the spectralclassification in the visual wavelength region, with near-infrared colorI - K, with a variability type, and with the period of variation. It wasfound that supergiants show silicate emission more frequently than dogiants. Silicate emission was found in stars of all three variabilitytypes: irregular, semiregular, and Mira variables. The proportion ofstars with silicate emission was found to be larger for Mira variables.Most of the Mira variables with periods of variation longer than about450 d were found to show silicate emission.

The Perkins catalog of revised MK types for the cooler stars
A catalog is presented listing the spectral types of the G, K, M, and Sstars that have been classified at the Perkins Observatory in therevised MK system. Extensive comparisons have been made to ensureconsistency between the MK spectral types of stars in the Northern andSouthern Hemispheres. Different classification spectrograms have beengradually improved in spite of some inherent limitations. In thecatalog, the full subclasses used are the following: G0, G5, G8, K0, K1,K2, K3, K4, K5, M0, M1, M2, M3, M4, M5, M6, M7, and M8. Theirregularities are the price paid for keeping the general scheme of theoriginal Henry Draper classification.

A list of MK standard stars
Not Available

Infrared circumstellar shells - Origins, and clues to the evolution of massive stars
The infrared fluxes, spatial and spectral characteristics for a sampleof 111 supergiant stars of spectral types F0 through M5 are tabulated,and correlations examined with respect to the nature of theircircumstellar envelopes. One-fourth of these objects were spatialyresolved by IRAS at 60 microns and possess extended circumstellar shellmaterial, with implied expansion ages of about 10 to the 5th yr.Inferences about the production of dust, mass loss, and the relation ofthese characteristics of the evolution of massive stars, are discussed.

1988 Revised MK Spectral Standards for Stars GO and Later
Not Available

Analysis of the correlations between polarimetric and photometric properties of young stars
The results of an investigation of the correlations between polarimetricand photometric characteristics of a sample of young Ae/Be Herbig, FUOrion, and T Taurus-type young stars are presented. It is shown that acommon dependence between polarization and IR excesses exists for 80percent of the stars in the sample. A comparison is made between the ageof the stars and the magnitude of their radiation polarization.

Additional late-type stars with technetium
The results of a survey of 279 late-type giants and supergiants for thespectral lines of the radioactive element technetium (Tc I) at 4297,4262, and 4238 A are presented. The following conclusions are reached:(1) the presence of Tc correlates very strongly with the existence oflight variability; (2) evolutionary MS stars show Tc and spectroscopicMS stars do not show Tc; (3) single S stars show Tc; (4) SC stars showTc; (5) about 75 percent of the C stars show Tc; and (6) Ba II stars donot show Tc. The findings are compatible with predictions from stellarevolution theory.

UBV Photoelectric Photometry Catalogue (1986). III Errors and Problems on DM and HD Stars
Not Available

Enviar un nuevo artículo


Enlaces relacionados

  • - No se han encontrado enlaces -
En viar un nuevo enlace


Miembro de los siguientes grupos:


Datos observacionales y astrométricos

Constelación:Perseo
Ascensión Recta:02h21m42.41s
Declinación:+57°51'46.1"
Magnitud Aparente:7.897
Distancia:16666.667 parsecs
Movimiento Propio en Ascensión Recta:-1.7
Movimiento Propio en Declinación:-0.6
B-T magnitude:10.863
V-T magnitude:8.142

Catálogos y designaciones:
Nombres Propios   (Edit)
HD 1989HD 14404
TYCHO-2 2000TYC 3694-152-1
USNO-A2.0USNO-A2 1425-03315014
HIPHIP 10995

→ Solicitar más catálogos y designaciones a VizieR