Home     Getting Started     To Survive in the Universe    
Inhabited Sky
    News@Sky     Astro Photo     The Collection     Forum     Blog New!     FAQ     Press     Login  

NGC 2950


Contents

Images

Upload your image

DSS Images   Other Images


Related articles

Response of the integrals in the Tremaine-Weinberg method to multiple pattern speeds: a counter-rotating inner bar in NGC 2950?
When integrals in the standard Tremaine-Weinberg method are evaluatedfor the case of a realistic model of a doubly barred galaxy, theirmodifications introduced by the second rotating pattern are in accordwith what can be derived from a simple extension of that method, basedon separation of tracer's density. This extension yields a qualitativeargument that discriminates between prograde and retrograde inner bars.However, the estimate of the value of inner bar's pattern speed requiresfurther assumptions. When this extension of the Tremaine-Weinberg methodis applied to the recent observation of the doubly barred galaxy NGC2950, it indicates that the inner bar there is counter-rotating,possibly with the pattern speed of -140 +/- 50 km s-1arcsec-1. The occurrence of counter-rotating inner bars canconstrain theories of galaxy formation.

An Atlas of Hα and R Images and Radial Profiles of 29 Bright Isolated Spiral Galaxies
Narrowband Hα+[N II] and broadband R images and surface photometryare presented for a sample of 29 bright (MB<-18 mag)isolated S0-Scd galaxies within a distance of 48 Mpc. These galaxies areamong the most isolated nearby spiral galaxies of their Hubbleclassifications as determined from the Nearby Galaxies Catalog.

Stellar Populations in Nearby Lenticular Galaxies
We have obtained two-dimensional spectral data for a sample of 58 nearbyS0 galaxies with the Multi-Pupil Fiber/Field Spectrograph of the 6 mtelescope of the Special Astrophysical Observatory of the RussianAcademy of Sciences. The Lick indices Hβ, Mg b, and arecalculated separately for the nuclei and for the bulges taken as therings between R=4'' and 7", and the luminosity-weighted ages,metallicities, and Mg/Fe ratios of the stellar populations are estimatedby comparing the data to single stellar population (SSP) models. Fourtypes of galaxy environments are considered: clusters, centers ofgroups, other places in groups, and the field. The nuclei are found tobe on average slightly younger than the bulges in any type ofenvironment, and the bulges of S0 galaxies in sparse environments areyounger than those in dense environments. The effect can be partlyattributed to the well-known age correlation with the stellar velocitydispersion in early-type galaxies (in our sample the galaxies in sparseenvironments are on average less massive than those in denseenvironments), but for the most massive S0 galaxies, withσ*=170-220 km s-1, the age dependence on theenvironment is still significant at the confidence level of 1.5 σ.Based on observations collected with the 6 m telescope (BTA) at theSpecial Astrophysical Observatory (SAO) of the Russian Academy ofSciences (RAS).

How large are the bars in barred galaxies?
I present a study of the sizes (semimajor axes) of bars in discgalaxies, combining a detailed R-band study of 65 S0-Sb galaxies withthe B-band measurements of 70 Sb-Sd galaxies from Martin (1995). As hasbeen noted before with smaller samples, bars in early-type (S0-Sb)galaxies are clearly larger than bars in late-type (Sc-Sd) galaxies;this is true both for relative sizes (bar length as fraction ofisophotal radius R25 or exponential disc scalelength h) andabsolute sizes (kpc). S0-Sab bars extend to ~1-10 kpc (mean ~ 3.3 kpc),~0.2-0.8R25 (mean ~ 0.38R25) and ~0.5-2.5h (mean ~1.4h). Late-type bars extend to only ~0.5-3.5 kpc,~0.05-0.35R25 and 0.2-1.5h their mean sizes are ~1.5 kpc, ~0.14R25 and ~0.6h. Sb galaxies resemble earlier-type galaxiesin terms of bar size relative to h; their smallerR25-relative sizes may be a side effect of higher starformation, which increases R25 but not h. Sbc galaxies form atransition between the early- and late-type regimes. For S0-Sbcgalaxies, bar size correlates well with disc size (both R25and h); these correlations are stronger than the known correlation withMB. All correlations appear to be weaker or absent forlate-type galaxies; in particular, there seems to be no correlationbetween bar size and either h or MB for Sc-Sd galaxies.Because bar size scales with disc size and galaxy magnitude for mostHubble types, studies of bar evolution with redshift should selectsamples with similar distributions of disc size or magnitude(extrapolated to present-day values); otherwise, bar frequencies andsizes could be mis-estimated. Because early-type galaxies tend to havelarger bars, resolution-limited studies will preferentially find bars inearly-type galaxies (assuming no significant differential evolution inbar sizes). I show that the bars detected in Hubble Space Telescope(HST) near-infrared(IR) images at z~ 1 by Sheth et al. have absolutesizes consistent with those in bright, nearby S0-Sb galaxies. I alsocompare the sizes of real bars with those produced in simulations anddiscuss some possible implications for scenarios of secular evolutionalong the Hubble sequence. Simulations often produce bars as large as(or larger than) those seen in S0-Sb galaxies, but rarely any as smallas those in Sc-Sd galaxies.

The stellar populations of low-luminosity active galactic nuclei - III. Spatially resolved spectral properties
In a recently completed survey of the stellar population properties oflow-ionization nuclear emission-line regions (LINERs) and LINER/HIItransition objects (TOs), we have identified a numerous class ofgalactic nuclei which stand out because of their conspicuous108-9 yr populations, traced by high-order Balmer absorptionlines and other stellar indices. These objects are called `young-TOs',because they all have TO-like emission-line ratios. In this paper weextend this previous work, which concentrated on the nuclear properties,by investigating the radial variations of spectral properties inlow-luminosity active galactic nuclei (LLAGNs). Our analysis is based onhigh signal-to-noise ratio (S/N) long-slit spectra in the 3500-5500Å interval for a sample of 47 galaxies. The data probe distancesof typically up to 850 pc from the nucleus with a resolution of ~100 pc(~1 arcsec) and S/N ~ 30. Stellar population gradients are mapped by theradial profiles of absorption-line equivalent widths and continuumcolours along the slit. These variations are further analysed by meansof a decomposition of each spectrum in terms of template galaxiesrepresentative of very young (<=107 yr), intermediate age(108-9 yr) and old (1010 yr) stellar populations.This study reveals that young-TOs also differ from old-TOs andold-LINERs in terms of the spatial distributions of their stellarpopulations and dust. Specifically, our main findings are as follows.(i) Significant stellar population gradients are found almostexclusively in young-TOs. (ii) The intermediate age population ofyoung-TOs, although heavily concentrated in the nucleus, reachesdistances of up to a few hundred pc from the nucleus. Nevertheless, thehalf width at half-maximum of its brightness profile is more typically100 pc or less. (iii) Objects with predominantly old stellar populationspresent spatially homogeneous spectra, be they LINERs or TOs. (iv)Young-TOs have much more dust in their central regions than otherLLAGNs. (v) The B-band luminosities of the central <~1 Gyr populationin young-TOs are within an order of magnitude of MB=-15,implying masses of the order of ~107-108Msolar. This population was 10-100 times more luminous in itsformation epoch, at which time young massive stars would have completelyoutshone any active nucleus, unless the AGN too was brighter in thepast.

Radio sources in low-luminosity active galactic nuclei. IV. Radio luminosity function, importance of jet power, and radio properties of the complete Palomar sample
We present the completed results of a high resolution radio imagingsurvey of all ( 200) low-luminosity active galactic nuclei (LLAGNs) andAGNs in the Palomar Spectroscopic Sample of all ( 488) bright northerngalaxies. The high incidences of pc-scale radio nuclei, with impliedbrightness temperatures ≳107 K, and sub-parsec jetsargue for accreting black holes in ≳50% of all LINERs andlow-luminosity Seyferts; there is no evidence against all LLAGNs beingmini-AGNs. The detected parsec-scale radio nuclei are preferentiallyfound in massive ellipticals and in type 1 nuclei (i.e. nuclei withbroad Hα emission). The radio luminosity function (RLF) of PalomarSample LLAGNs and AGNs extends three orders of magnitude below, and iscontinuous with, that of “classical” AGNs. We find marginalevidence for a low-luminosity turnover in the RLF; nevertheless LLAGNsare responsible for a significant fraction of present day massaccretion. Adopting a model of a relativistic jet from Falcke &Biermann, we show that the accretion power output in LLAGNs is dominatedby the kinetic power in the observed jets rather than the radiatedbolometric luminosity. The Palomar LLAGNs and AGNs follow the samescaling between jet kinetic power and narrow line region (NLR)luminosity as the parsec to kilo-parsec jets in powerful radio galaxies.Eddington ratios {l_Edd} (=L_Emitted/L_Eddington) of≤10-1{-}10-5 are implied in jet models of theradio emission. We find evidence that, in analogy to Galactic black holecandidates, LINERs are in a “low/hard” state (gas poornuclei, low Eddington ratio, ability to launch collimated jets) whilelow-luminosity Seyferts are in a “high” state (gas richnuclei, higher Eddington ratio, less likely to launch collimated jets).In addition to dominating the radiated bolometric luminosity of thenucleus, the radio jets are energetically more significant thansupernovae in the host galaxies, and are potentially able to depositsufficient energy into the innermost parsecs to significantly slow thegas supply to the accretion disk.

Photometric properties and origin of bulges in SB0 galaxies
We have derived the photometric parameters for the structural componentsof a sample of fourteen SB0 galaxies by applying a parametricphotometric decomposition to their observed I-band surface brightnessdistribution. We find that SB0 bulges are similar to bulges of theearly-type unbarred spirals, i.e. they have nearly exponential surfacebrightness profiles (< n>=1.48±0.16) and their effectiveradii are strongly coupled to the scale lengths of their surroundingdiscs (< r_e/h>=0.20±0.01). The photometric analysis alonedoes not allow us to differentiate SB0 bulges from unbarred S0 ones.However, three sample bulges have disc properties typical ofpseudobulges. The bulges of NGC 1308 and NGC 4340 rotate faster thanbulges of unbarred galaxies and models of isotropic oblate spheroidswith equal ellipticity. The bulge of IC 874 has a velocity dispersionlower than expected from the Faber-Jackson correlation and thefundamental plane of the elliptical galaxies and S0 bulges. Theremaining sample bulges are classical bulges, and are kinematicallysimilar to lower-luminosity ellipticals. In particular, they follow theFaber-Jackson correlation, lie on the fundamental plane and those forwhich stellar kinematics are available rotate as fast as the bulges ofunbarred galaxies.

Fast bars in SB0 galaxies
We measured the bar pattern speed in a sample of 7 SB0 galaxies usingthe Tremaine-Weinberg method. This represents the largest sample ofgalaxies for which the bar pattern speed has been measured this way. Allthe observed bars are as rapidly rotating as they can be. We comparedthis result with recent high-resolution N-body simulations of bars incosmologically-motivated dark matter halos, and conclude that these barsare not located inside centrally concentrated halos.

Secular Evolution and the Formation of Pseudobulges in Disk Galaxies
The Universe is in transition. At early times, galactic evolution wasdominated by hierarchical clustering and merging, processes that areviolent and rapid. In the far future, evolution will mostly be secularthe slow rearrangement of energy and mass that results from interactionsinvolving collective phenomena such as bars, oval disks, spiralstructure, and triaxial dark halos. Both processes are important now.This review discusses internal secular evolution, concentrating on oneimportant consequence, the buildup of dense central components in diskgalaxies that look like classical, merger-built bulges but that weremade slowly out of disk gas. We call these pseudobulges.

The Stellar Populations of Low-Luminosity Active Galactic Nuclei. II. Space Telescope Imaging Spectrograph Observations
We present a study of the stellar populations of low-luminosity activegalactic nuclei (LLAGNs). Our goal is to search for spectroscopicsignatures of young and intermediate-age stars and to investigate theirrelationship with the ionization mechanism in LLAGNs. The method used isbased on the stellar population synthesis of the optical continuum ofthe innermost (20-100 pc) regions in these galaxies. For this purpose,we have collected high spatial resolution optical (2900-5700 Å)STIS spectra of 28 nearby LLAGNs that are available in the Hubble SpaceTelescope archive. The analysis of these data is compared with a similaranalysis also presented here for 51 ground-based spectra of LLAGNs. Ourmain findings are as follows: (1) No features due to Wolf-Rayet starswere convincingly detected in the STIS spectra. (2) Young starscontribute very little to the optical continuum in the ground-basedaperture. However, the fraction of light provided by these stars ishigher than 10% in most of the weak-[O I] ([OI]/Hα<=0.25) LLAGNSTIS spectra. (3) Intermediate-age stars contribute significantly to theoptical continuum of these nuclei. This population is more frequent inobjects with weak than with strong [O I]. Weak-[O I] LLAGNs that haveyoung stars stand out for their intermediate-age population. (4) Most ofthe strong-[O I] LLAGNs have predominantly old stellar population. A fewof these objects also show a featureless continuum that contributessignificantly to the optical continuum. These results suggest that youngand intermediate-age stars do not play a significant role in theionization of LLAGNs with strong [O I]. However, the ionization inweak-[O I] LLAGNs with young and/or intermediate-age populations couldbe due to stellar processes. A comparison of the properties of theseobjects with Seyfert 2 galaxies that harbor a nuclear starburst suggeststhat weak-[O I] LLAGNs are the lower luminosity counterparts of theSeyfert 2 composite nuclei.Based on observations with the NASA/ESA Hubble Space Telescope, obtainedat the Space Telescope Science Institute, which is operated by theAssociation of Universities for Research in Astronomy, Inc., under NASAcontract NAS 5-26555. Based on observations made with the Nordic OpticalTelescope (NOT), operated on the island of La Palma jointly by Denmark,Finland, Iceland, Norway, and Sweden, in the Spanish Observatorio delRoque de los Muchachos of the Instituto de Astrofísica deCanarias.

The Stellar Populations of Low-Luminosity Active Galactic Nuclei. I. Ground-based Observations
We present a spectroscopic study of the stellar populations oflow-luminosity active galactic nuclei (LLAGNs). Our main goal is todetermine whether the stars that live in the innermost (100 pc scale)regions of these galaxies are in some way related to the emission-lineproperties, which would imply a link between the stellar population andthe ionization mechanism. High signal-to-noise ratio, ground-basedlong-slit spectra in the 3500-5500 Å interval were collected for60 galaxies: 51 LINERs and LINER/H II transition objects, two starburstgalaxies, and seven nonactive galaxies. In this paper, the first of aseries, we (1) describe the sample; (2) present the nuclear spectra; (3)characterize the stellar populations of LLAGNs by means of an empiricalcomparison with normal galaxies; (4) measure a set of spectral indices,including several absorption-line equivalent widths and colorsindicative of stellar populations; and (5) correlate the stellar indiceswith emission-line ratios that may distinguish between possibleexcitation sources for the gas. Our main findings are as follows: (1)Few LLAGNs have a detectable young (<~107 yr) starburstcomponent, indicating that very massive stars do not contributesignificantly to the optical continuum. In particular, no features dueto Wolf-Rayet stars were convincingly detected. (2) High-order Balmerabsorption lines of H I (HOBLs), on the other hand, are detected in ~40%of LLAGNs. These features, which are strongest in108-109 yr intermediate-age stellar populations,are accompanied by diluted metal absorption lines and bluer colors thanother objects in the sample. (3) These intermediate-age populations arevery common (~50%) in LLAGNs with relatively weak [O I] emission([OI]/Hα<=0.25) but rare (~10%) in LLAGNs with stronger [O I].This is intriguing since LLAGNs with weak [O I] have been previouslyhypothesized to be ``transition objects'' in which both an AGN and youngstars contribute to the emission-line excitation. Massive stars, ifpresent, are completely outshone by intermediate-age and old stars inthe optical. This happens in at least a couple of objects whereindependent UV spectroscopy detects young starbursts not seen in theoptical. (4) Objects with predominantly old stars span the whole rangeof [O I]/Hα values, but (5) sources with significant young and/orintermediate-age populations are nearly all (~90%) weak-[O I] emitters.These new findings suggest a link between the stellar populations andthe gas ionization mechanism. The strong-[O I] objects are most likelytrue LLAGNs, with stellar processes being insignificant. However, theweak-[O I] objects may comprise two populations, one where theionization is dominated by stellar processes and another where it isgoverned by either an AGN or a more even mixture of stellar and AGNprocesses. Possible stellar sources for the ionization include weakstarbursts, supernova remnants, and evolved poststarburst populations.These scenarios are examined and constrained by means of complementaryobservations and detailed modeling of the stellar populations inforthcoming communications.Based on observations made with the Nordic Optical Telescope, operatedon the island of La Palma jointly by Denmark, Finland, Iceland, Norway,and Sweden, in the Spanish Observatorio del Roque de los Muchachos ofthe Instituto de Astrofísica de Canárias.

Evidence of a Misaligned Secondary Bar in the Large Magellanic Cloud
Evidence of a misaligned secondary bar, within the primary bar of theLarge Magellanic Cloud (LMC), is presented. The density distribution andthe dereddened mean magnitudes (I0) of the red clump stars inthe bar obtained from the Optical Gravitational Lensing Experiment IIdata are used for this study. The bar region that predominantly showed awavy pattern in the line of sight in a recent paper by Subramaniam waslocated. These points in the X-Z plane delineate an S-shaped pattern,clearly indicating a misaligned bar. This feature is statisticallysignificant and does not depend on the considered value of I0for the LMC center. The rest of the bar region was not found to show thewarp or the wavy pattern. The secondary bar is found to be considerablyelongated in the Z-direction, with an inclination of 66.5d+/-0.9d,whereas the undisturbed part of the primary bar is found to have aninclination of 15.1d+/-2.7d, such that the eastern sides are closer tous with respect to the western sides of both the bars. TheP.A.maj of the secondary bar is found to be 108.4d+/-7.3d.The streaming motions found in the H I velocity map close to the LMCcenter could be caused by the secondary bar. The recent star formationand the gas distribution in LMC could be driven by the misalignedsecondary bar.

Molecular Gas in Candidate Double-Barred Galaxies. III. A Lack of Molecular Gas?
Most models of double-barred galaxies suggest that a molecular gascomponent is crucial for maintaining long-lived nuclear bars. We haveundertaken a CO survey in an attempt to determine the gas content ofthese systems and to locate double-barred galaxies with strong COemission that could be candidates for high-resolution mapping. Weobserved 10 galaxies in CO J=2-1 and J=3-2 and did not detect anygalaxies that had not already been detected in previous CO surveys. Wepreferentially detect emission from galaxies containing some form ofnuclear activity. Simulations of these galaxies require that theycontain 2%-10% gas by mass in order to maintain long-lived nuclear bars.The fluxes for the galaxies for which we have detections suggest thatthe gas mass fraction is in agreement with these models requirements.The lack of emission in the other galaxies suggests that they contain aslittle as 7×106 Msolar of molecularmaterial, which corresponds to <~0.1% gas by mass. This resultcombined with the wide variety of CO distributions observed indouble-barred galaxies suggests the need for models of double-barredgalaxies that do not require a large, well-ordered molecular gascomponent.

Inner-truncated Disks in Galaxies
We present an analysis of the disk brightness profiles of 218 spiral andlenticular galaxies. At least 28% of disk galaxies exhibit innertruncations in these profiles. There are no significant trends oftruncation incidence with Hubble type, but the incidence among barredsystems is 49%, more than 4 times that for nonbarred galaxies. However,not all barred systems have inner truncations, and not allinner-truncated systems are currently barred. Truncations represent areal dearth of disk stars in the inner regions and are not an artifactof our selection or fitting procedures nor the result of obscuration bydust. Disk surface brightness profiles in the outer regions are wellrepresented by simple exponentials for both truncated and nontruncateddisks. However, truncated and nontruncated systems have systematicallydifferent slopes and central surface brightness parameters for theirdisk brightness distributions. Truncation radii do not appear tocorrelate well with the sizes or brightnesses of the bulges. Thissuggests that the low angular momentum material apparently missing fromthe inner disk was not simply consumed in forming the bulge population.Disk parameters and the statistics of bar orientations in our sampleindicate that the missing stars of the inner disk have not simply beenredistributed azimuthally into bar structures. The sharpness of thebrightness truncations and their locations with respect to othergalactic structures suggest that resonances associated with diskkinematics, or tidal interactions with the mass of bulge stars, might beresponsible for this phenomenon.

Structure and kinematics of candidatedouble-barred galaxies
Results of optical and NIR spectral and photometric observations of asample of candidate double-barred galaxies are presented. Velocityfields and velocity dispersion maps of stars and ionized gas, continuumand emission-line images were constructed from integral-fieldspectroscopy observations carried out at the 6 m telescope (BTA) of SAORAS, with the MPFS spectrograph and the scanning Fabry-PerotInterferometer. NGC 2681 was also observed with thelong-slit spectrograph of the BTA. Optical and NIR images were obtainedat the BTA and at the 2.1 m telescope (OAN, México).High-resolution images were retrieved from the HST data archive.Morphological and kinematic features of all 13 sample objects aredescribed in detail. Attention is focused on the interpretation ofobserved non-circular motions of gas and stars in circumnuclear (onekiloparsec-scale) regions. We have shown first of all that these motionsare caused by the gravitational potential of a large-scale bar.NGC 3368 and NGC 3786 have nuclearbars only, their isophotal twist at larger radii being connected withthe bright spiral arms. Three cases of inner polar disks in our sample(NGC 2681, NGC 3368 andNGC 5850) are considered. We found ionized-gascounter-rotation in the central kiloparsec of the lenticular galaxyNGC 3945. Seven galaxies (NGC 470,NGC 2273, NGC 2681, NGC3945, NGC 5566, NGC5905, and NGC 6951) have inner mini-disksnested in large-scale bars. Minispiral structures occur often in thesenuclear disks. It is interesting that the majority of the observed,morphological and kinematical, features in the sample galaxies can beexplained without the secondary bar hypothesis. Thus we suggest that adynamically independent secondary bar is a rarer phenomenon than followsfrom isophotal analysis of the images only.Based on observations carried out at the 6 m telescope of the SpecialAstrophysical Observatory of the Russian Academy of Sciences, operatedunder the financial support of the Science Department of Russia(registration number 01-43), at the 2.1 m telescope of the ObservatorioAstronónico Nacional, San Pedro Martir, México, and fromthe data archive of the NASA/ESA Hubble Space Telescope at the SpaceTelescope Science Institute. STScI is operated by the association ofUniversities for Research in Astronomy, Inc. under NASA contract NAS5-26555.Tables 1 to 6 and Figures 2-13 and 15-18 are only available inelectronic form at http://www.edpsciences.org

Double-barred galaxies. I. A catalog of barred galaxies with stellar secondary bars and inner disks
I present a catalog of 67 barred galaxies which contain distinct,elliptical stellar structures inside their bars. Fifty of these aredouble-barred galaxies: a small-scale, inner or secondary bar isembedded within a large-scale, outer or primary bar. I providehomogenized measurements of the sizes, ellipticities, and orientationsof both inner and outer bars, along with global parameters for thegalaxies. The other 17 are classified as inner-disk galaxies, where alarge-scale bar harbors an inner elliptical structure which is alignedwith the galaxy's outer disk. Four of the double-barred galaxies alsopossess inner disks, located in between the inner and outer bars. Whilethe inner-disk classification is ad-hoc - and undoubtedly includes someinner bars with chance alignments (five such probable cases areidentified) - there is good evidence that inner disks form astatistically distinct population, and that at least some are indeeddisks rather than bars. In addition, I list 36 galaxies which may bedouble-barred, but for which current observations are ambiguous orincomplete, and another 23 galaxies which have been previously suggestedas potentially being double-barred, but which are probably not. Falsedouble-bar identifications are usually due to features such as nuclearrings and spirals being misclassified as bars; I provide someillustrated examples of how this can happen.A detailed statistical analysis of the general population of double-barand inner-disk galaxies, as represented by this catalog, will bepresented in a companion paper.Tables \ref{tab:measured} and \ref{tab:deproj} are only available inelectronic form at http://www.edpsciences.org

An Imaging Survey of Early-Type Barred Galaxies
This paper presents the results of a high-resolution imaging survey,using both ground-based and Hubble Space Telescope images, of a completesample of nearby barred S0-Sa galaxies in the field, with a particularemphasis on identifying and measuring central structures within thebars: secondary bars, inner disks, nuclear rings and spirals, andoff-plane dust. A discussion of the frequency and statistical propertiesof the various types of inner structures has already been published.Here we present the data for the individual galaxies and measurements oftheir bars and inner structures. We set out the methods we use to findand measure these structures, and how we discriminate between them. Inparticular, we discuss some of the deficiencies of ellipse fitting ofthe isophotes, which by itself cannot always distinguish between bars,rings, spirals, and dust, and which can produce erroneous measurementsof bar sizes and orientations.

Direct Confirmation of Two Pattern Speeds in the Double-barred Galaxy NGC 2950
We present the surface photometry and stellar kinematics of NGC 2950,which is a nearby and undisturbed SB0 galaxy hosting two nested stellarbars. We use the Tremaine-Weinberg method to measure the pattern speedof the primary bar. This also permits us to establish directly and forthe first time that the two nested bars are rotating with differentpattern speeds and, in particular, that the rotation frequency of thesecondary bar is higher than that of the primary one.Based on observations made with the UK Jacobus Kapteyn Telescope and theItalian Telescopio Nazionale Galileo operated at the SpanishObservatorio del Roque de los Muchachos of the Instituto deAstrofísica de Canarias by the Isaac Newton Group and theIstituto Nazionale di Astrofisica, respectively.

When Is a Bulge Not a Bulge? Inner Disks Masquerading as Bulges in NGC 2787 and NGC 3945
We present a detailed morphological, photometric, and kinematic analysisof two barred S0 galaxies with large, luminous inner disks inside theirbars. We show that these structures, in addition to being geometricallydisklike, have exponential profiles (scale lengths ~300-500 pc) distinctfrom the central, nonexponential bulges. We also find them to bekinematically disklike. The inner disk in NGC 2787 has a luminosityroughly twice that of the bulge; but in NGC 3945, the inner disk isalmost 10 times more luminous than the bulge, which itself is extremelysmall (half-light radius ~100 pc, in a galaxy with an outer ring ofradius ~14 kpc) and has only ~5% of the total luminosity-a bulge/totalratio much more typical of an Sc galaxy. We estimate that at least 20%of (barred) S0 galaxies may have similar structures, which means thattheir bulge/disk ratios may be significantly overestimated. These innerdisks dominate the central light of their galaxies; they are at least anorder of magnitude larger than typical ``nuclear disks'' found inelliptical and early-type spiral galaxies. Consequently, they mustaffect the dynamics of the bars in which they reside.

A Search for ``Dwarf'' Seyfert Nuclei. VI. Properties of Emission-Line Nuclei in Nearby Galaxies
We use the database from Paper III to quantify the global and nuclearproperties of emission-line nuclei in the Palomar spectroscopic surveyof nearby galaxies. We show that the host galaxies of Seyferts, LINERs,and transition objects share remarkably similar large-scale propertiesand local environments. The distinguishing traits emerge on nuclearscales. Compared with LINERs, Seyfert nuclei are an order of magnitudemore luminous and exhibit higher electron densities and internalextinction. We suggest that Seyfert galaxies possess characteristicallymore gas-rich circumnuclear regions and hence a more abundant fuelreservoir and plausibly higher accretion rates. The differences betweenthe ionization states of the narrow emission-line regions of Seyfertsand LINERs can be partly explained by the differences in their nebularproperties. Transition-type objects are consistent with being composite(LINER/H II) systems. With very few exceptions, the stellar populationwithin the central few hundred parsecs of the host galaxies is uniformlyold, a finding that presents a serious challenge to starburst orpost-starburst models for these objects. Seyferts and LINERs havevirtually indistinguishable velocity fields as inferred from their linewidths and line asymmetries. Transition nuclei tend to have narrowerlines and more ambiguous evidence for line asymmetries. All threeclasses of objects obey a strong correlation between line width and lineluminosity. We argue that the angular momentum content of circumnucleargas may be an important factor in determining whether a nucleus becomesactive. Finally, we discuss some possible complications for theunification model of Seyfert galaxies posed by our observations.

Star Formation Histories of Early-Type Galaxies. I. Higher Order Balmer Lines as Age Indicators
We have obtained blue integrated spectra of 175 nearby early-typegalaxies, covering a wide range in galaxy velocity dispersion andemphasizing those with σ<100 km s-1. Galaxies havebeen observed both in the Virgo Cluster and in lower densityenvironments. The main goals are the evaluation of higher order Balmerlines as age indicators and differences in stellar populations as afunction of mass, environment, and morphology. In this first paper, ouremphasis is on presenting the methods used to characterize the behaviorof the Balmer lines through evolutionary population synthesis models.Lower σ galaxies exhibit a substantially greater intrinsicscatter, in a variety of line-strength indicators, than do higherσ galaxies, with the large intrinsic scatter setting in below aσ of 100 km s-1. Moreover, a greater contrast inscatter is present in the Balmer lines than in the lines of metalfeatures. Evolutionary synthesis modeling of the observed spectralindexes indicates that the strong Balmer lines found primarily among thelow-σ galaxies are caused by young age, rather than by lowmetallicity. Thus we find a trend between the population age and thecentral velocity dispersion, such that low-σ galaxies have youngerluminosity-weighted mean ages. We have repeated this analysis usingseveral different Balmer lines and find consistent results from onespectral indicator to another.

A new catalogue of ISM content of normal galaxies
We have compiled a catalogue of the gas content for a sample of 1916galaxies, considered to be a fair representation of ``normality''. Thedefinition of a ``normal'' galaxy adopted in this work implies that wehave purposely excluded from the catalogue galaxies having distortedmorphology (such as interaction bridges, tails or lopsidedness) and/orany signature of peculiar kinematics (such as polar rings,counterrotating disks or other decoupled components). In contrast, wehave included systems hosting active galactic nuclei (AGN) in thecatalogue. This catalogue revises previous compendia on the ISM contentof galaxies published by \citet{bregman} and \citet{casoli}, andcompiles data available in the literature from several small samples ofgalaxies. Masses for warm dust, atomic and molecular gas, as well asX-ray luminosities have been converted to a uniform distance scale takenfrom the Catalogue of Principal Galaxies (PGC). We have used twodifferent normalization factors to explore the variation of the gascontent along the Hubble sequence: the blue luminosity (LB)and the square of linear diameter (D225). Ourcatalogue significantly improves the statistics of previous referencecatalogues and can be used in future studies to define a template ISMcontent for ``normal'' galaxies along the Hubble sequence. The cataloguecan be accessed on-line and is also available at the Centre desDonnées Stellaires (CDS).The catalogue is available in electronic form athttp://dipastro.pd.astro.it/galletta/ismcat and at the CDS via anonymousftp to\ cdsarc.u-strasbg.fr (130.79.128.5) or via\http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/405/5

Efficient multi-Gaussian expansion of galaxies
We describe a simple, efficient, robust and fully automatic algorithmfor the determination of a multi-Gaussian expansion (MGE) fit to galaxyimages, to be used as a parametrization for the galaxy stellar surfacebrightness. In most cases the least-squares solution found by thismethod essentially corresponds to the minimax, constant relative error,MGE approximation of the galaxy surface brightness, with the chosennumber of Gaussians. The algorithm is well suited to be used withmultiple-resolution images (e.g. Hubble Space Telescope (HST) andground-based images). It works orders of magnitude faster and is moreaccurate than currently available methods. An alternative, morecomputing-intensive, fully linear algorithm that is guaranteed toconverge to the smallest χ2 solution is also discussed.Examples of MGE fits are presented for objects with HST or ground-basedphotometry, including galaxies with significant isophote twist.

Two-Dimensional Spectroscopy of Double-Barred Galaxies
We describe the results of our spectroscopy for a sample of barredgalaxies whose inner regions exhibit an isophotal twist commonly calleda secondary bar. The line-of-sight velocity fields of the ionized gasand stars and the light-of-sight velocity dispersion fields of the starswere constructed from two-dimensional spectroscopy with the 6m SpecialAstrophysical Observatory telescope. We detected various types ofnon-circular motions of ionized gas: radial flows within large-scalebars, counter-rotation of the gas and stars at the center of NGC 3945, apolar gaseous disk in NGC 5850, etc. Our analysis of the optical andnear-infrared images (both ground-based and those from the Hubble SpaceTelescope) revealed circumnuclear minispirals in five objects. Thepresence of an inner (secondary) bar in the galaxy images is shown tohave no effect on the circumnuclear kinematics of the gas and stars.Thus, contrary to popular belief, the secondary bar is not a dynamicallydecoupled galactic structure. We conclude that the so-calleddouble-barred galaxies are not a separate type of galaxies but are acombination of objects with distinctly different morphology of theircircumnuclear regions.

Nuclear Cusps and Cores in Early-Type Galaxies as Relics of Binary Black Hole Mergers
We present an analysis of the central cusp slopes and core parameters ofearly-type galaxies using a large database of surface brightnessprofiles obtained from Hubble Space Telescope observations. We examinethe relation between the central cusp slopes, core parameters, and blackhole masses in early-type galaxies, in light of two models that attemptto explain the formation of cores and density cusps via the dynamicalinfluence of black holes. Contrary to the expectations fromadiabatic-growth models, we find that the cusp slopes do not steepenwith increasing black hole mass fraction. Moreover, a comparison ofkinematic black hole mass measurements with the masses predicted by theadiabatic models shows that they overpredict the masses by a factor of~3. Simulations involving binary black hole mergers predict that boththe size of the core and the central mass deficit correlate with thefinal black hole mass. These relations are qualitatively supported bythe present data.

Bar Galaxies and Their Environments
The prints of the Palomar Sky Survey, luminosity classifications, andradial velocities were used to assign all northern Shapley-Ames galaxiesto either (1) field, (2) group, or (3) cluster environments. Thisinformation for 930 galaxies shows no evidence for a dependence of barfrequency on galaxy environment. This suggests that the formation of abar in a disk galaxy is mainly determined by the properties of theparent galaxy, rather than by the characteristics of its environment.

Double Bars, Inner Disks, and Nuclear Rings in Early-Type Disk Galaxies
We present results from a survey of an unbiased sample of 38 early-type(S0-Sa), low-inclination, optically barred galaxies in the field, usingimages both from the ground and from space. Our goal was to find andcharacterize central stellar and gaseous structures: secondary bars,inner disks, and nuclear rings. We find that bars inside bars aresurprisingly common: at least one-quarter of the sample galaxies(possibly as many as 40%) are double barred, with no preference forHubble type or the strength of the primary bar. A typical secondary baris ~12% of the size of its primary bar and extends to 240-750 pc inradius. Secondary bars are not systematically either parallel orperpendicular to the primary; we see cases where they lead the primarybar in rotation and others where they trail, which supports thehypothesis that the two bars of a double-bar system rotateindependently. We see no significant effect of secondary bars on nuclearactivity: our double-barred galaxies are no more likely to harbor aSeyfert or LINER nucleus than our single-barred galaxies. We findkiloparsec-scale inner disks in at least 20% of our sample; they occuralmost exclusively in S0 galaxies. These disks are on average 20% thesize of their host bar and show a wider range of relative sizes than dosecondary bars. Nuclear rings are present in about a third of oursample. Most of these rings are dusty, sites of current or recent starformation, or both; such rings are preferentially found in Sa galaxies.Three S0 galaxies (8% of the sample, but 15% of the S0's) appear to havepurely stellar nuclear rings, with no evidence for dust or recent starformation. The fact that these central stellar structures are so commonindicates that the inner regions of early-type barred galaxies typicallycontain dynamically cool and disklike structures. This is especiallytrue for S0 galaxies, where secondary bars, inner disks, and/or stellarnuclear rings are present at least two-thirds of the time. If weinterpret nuclear rings, secondary bars, and (possibly) inner disks andnuclear spirals as signs of inner Lindblad resonances (ILRs), thenbetween one and two-thirds of barred S0-Sa galaxies show evidence forILRs.

A synthesis of data from fundamental plane and surface brightness fluctuation surveys
We perform a series of comparisons between distance-independentphotometric and spectroscopic properties used in the surface brightnessfluctuation (SBF) and fundamental plane (FP) methods of early-typegalaxy distance estimation. The data are taken from two recent surveys:the SBF Survey of Galaxy Distances and the Streaming Motions of AbellClusters (SMAC) FP survey. We derive a relation between(V-I)0 colour and Mg2 index using nearly 200galaxies and discuss implications for Galactic extinction estimates andearly-type galaxy stellar populations. We find that the reddenings fromSchlegel et al. for galaxies with E(B-V)>~0.2mag appear to beoverestimated by 5-10 per cent, but we do not find significant evidencefor large-scale dipole errors in the extinction map. In comparison withstellar population models having solar elemental abundance ratios, thegalaxies in our sample are generally too blue at a given Mg2;we ascribe this to the well-known enhancement of the α-elements inluminous early-type galaxies. We confirm a tight relation betweenstellar velocity dispersion σ and the SBF `fluctuation count'parameter N, which is a luminosity-weighted measure of the total numberof stars in a galaxy. The correlation between N and σ is eventighter than that between Mg2 and σ. Finally, we deriveFP photometric parameters for 280 galaxies from the SBF survey data set.Comparisons with external sources allow us to estimate the errors onthese parameters and derive the correction necessary to bring them on tothe SMAC system. The data are used in a forthcoming paper, whichcompares the distances derived from the FP and SBF methods.

The SBF Survey of Galaxy Distances. IV. SBF Magnitudes, Colors, and Distances
We report data for I-band surface brightness fluctuation (SBF)magnitudes, (V-I) colors, and distance moduli for 300 galaxies. Thesurvey contains E, S0, and early-type spiral galaxies in the proportionsof 49:42:9 and is essentially complete for E galaxies to Hubblevelocities of 2000 km s-1, with a substantial sampling of Egalaxies out to 4000 km s-1. The median error in distancemodulus is 0.22 mag. We also present two new results from the survey.(1) We compare the mean peculiar flow velocity (bulk flow) implied byour distances with predictions of typical cold dark matter transferfunctions as a function of scale, and we find very good agreement withcold, dark matter cosmologies if the transfer function scale parameterΓ and the power spectrum normalization σ8 arerelated by σ8Γ-0.5~2+/-0.5. Deriveddirectly from velocities, this result is independent of the distributionof galaxies or models for biasing. This modest bulk flow contradictsreports of large-scale, large-amplitude flows in the ~200 Mpc diametervolume surrounding our survey volume. (2) We present adistance-independent measure of absolute galaxy luminosity, N and showhow it correlates with galaxy properties such as color and velocitydispersion, demonstrating its utility for measuring galaxy distancesthrough large and unknown extinction. Observations in part from theMichigan-Dartmouth-MIT (MDM) Observatory.

Young Populations in the Nuclei of Barred Galaxies
We have conducted UBVRI and H_α CCD photometry of five barredgalaxies (NGC 2523, NGC 2950, NGC 3412, NGC 3945 and NGC 5383), alongwith SPH simulations, in order to understand the origin of young stellarpopulations in the nuclei of barred galaxies. The H_α emission,which is thought to be emitted by young stellar populations, is eitherabsent or strongly concentrated in the nuclei of early-type galaxies(NGC 2950, NGC 3412 and NGC 3945), while they are observed in the nucleiand circumnuclear regions of intermediate-type galaxies with strong bars(NGC 2523 and NGC 5383). SPH simulations of realistic mass models forthese galaxies show that some disc material can be driven into thenuclear region by a strong bar potential. This implies that the youngstellar populations in the circumnuclear regions of barred galaxies canbe formed out of such gas. The existence of nuclear dust lanes is anindication of an ongoing gas inflow and extremely young stellarpopulations in these galaxies, because nuclear dust lanes such as thosein NGC 5383 are not long-lasting features according to our simulations.

Submit a new article


Related links

  • - No Links Found -
Submit a new link


Member of following groups:


Observation and Astrometry data

Constellation:Ursa Major
Right ascension:09h42m35.30s
Declination:+58°51'04.0"
Aparent dimensions:2.951′ × 1.862′

Catalogs and designations:
Proper Names   (Edit)
NGC 2000.0NGC 2950
HYPERLEDA-IPGC 27765

→ Request more catalogs and designations from VizieR